Eigenvalues, Pseudospectrum and Structured Perturbations

نویسنده

  • SIEGFRIED M. RUMP
چکیده

We investigate the behavior of eigenvalues under structured perturbations. We show that for many common structures such as (complex) symmetric, Toeplitz, symmetric Toeplitz, circulant and others the structured condition number is equal to the unstructured condition number for normwise perturbations, and prove similar results for real perturbations. An exception are complex skewsymmetric matrices. We also investigate componentwise complex and real perturbations. Here Hermitian and skew-Hermitian matrices are exceptional for real perturbations. Furthermore we characterize the structured (complex and real) pseudospectrum for a number of structures and show that often there is little or no significant difference to the usual, unstructured pseudospectrum. AMS subject classifications. 65F15, 15A18

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Pseudospectra for Small Perturbations

In this paper we study the shape and growth of structured pseudospectra for small matrix perturbations of the form A A∆ = A + B∆C, ∆ ∈ ∆, ‖∆‖ ≤ δ. It is shown that the properly scaled pseudospectra components converge to non-trivial limit sets as δ tends to 0. We discuss the relationship of these limit sets with μ-values and structured eigenvalue condition numbers for multiple eigenvalues.

متن کامل

Toeplitz structured perturbations

We will investigate the condition number, eigenvalue perturbations and pseudospectrum of Toeplitz matrices under structured perturbations. Sometimes we will see few changes, sometimes, although provably rare, dramatic differences in the structured and unstructured view. Connections to minimization problems concerning polynomials are shown. One result is that the structured distance to the neare...

متن کامل

A Note on Structured Pseudospectra∗

In this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant and symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials. Indeed, we prove that the structured pseudospectrum equals the ...

متن کامل

Criss-Cross Type Algorithms for Computing the Real Pseudospectral Abscissa

The real ε-pseudospectrum of a real matrix A consists of the eigenvalues of all real matrices that are ε-close in spectral norm to A. The real pseudospectral abscissa, which is the largest real part of these eigenvalues for a prescribed value ε, measures the structured robust stability of A w.r.t. real perturbations. In this report, we introduce a criss-cross type algorithm to compute the real ...

متن کامل

Multiplicities of the structured pseudoeigenvalues

The structured pseudospectra of a matrix A are sets of complex numbers that are eigenvalues of matrices X which are near to A and have the same entries as A at a fixed set of places. The sum of multiplicities of the eigenvalues of X inside each connected component of the structured pseudospectra of A does not depend on X. This fact is known, but not so much as it should be. For this reason, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005